
AD-A263 126

ARPA/ONR Quarterly Report

CONTRACTNUMBER: N00014-91-J-1985

O3NTRACTOR: Duke University

ARPA ORDER NO. 43 3 17 14-0 1/4 -6-88

PROGRAM- NAME: N0 0014

CONTRACr AMOUNT: $ 696,899.00 DTI
EFFEC-VE DATE OF CONTRACT: July 1, 1991 Si-T1

EXPIRATION DATE OF CONTRACT: June 30, 1994SAPR21b99

PRINCIPAL INVESTIGATOR: John H. Reif

TELEPHONENUMBER: (919) 660-6568

SHORT TTLE OF WORK: Implementation of Parallel
Algorithms

REPORTING PERIOD: 1 Jan 93 - 31 Mar 1993

The views and conclusions contained in this document are those of the
author(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied of the Advanced Research
Projects Agency or the U.S. Government.

S 23-840693 3 ' -, r44 o A M " INOR#,~~iII '



DESCRIPTION OF PROGRESS

Investigations of several subproblems in the area of derivation of parallel
programs were continued during the current quarter. These investigations
include:

(1) Michael Landis (graduate student), John Reif (PI), and Robert
Wagner (Duke faculty): Intermediate Representation for Parallel
Implementation

Our collaboration with Carnegie Mellon and work on the Cray
multiprocessor implementation of CVL is continuing. This work will be
completed by the end of April.

These research efforts are focused on the possibility of extending a high-
level data-parallel language with constructs for process parallelism. Our
goal is to begin with a data-parallel language like NESL, which is under
development by Guy Blelloch at Carnegie Mellon University. This language
provides nested data-parallelism. We believe that by extending it with
process parallel primitives, the language will have wider applicability, but
yet will still be able to be implemented efficiently.

This work has evolved directly out of research over the past year in trying
to develop extensions to a low-level data-parallel intermediate
representation to accommodate asynchronous processes. After extensive
research we have decided that parallel process extensions to a low-level
intermediate representation are not practical because of fundamental
differences in primitives provided by different hardware vendors.
Instead, we are focusing our efforts currently on the extension of a run-
time library for implementing data-parallel languages. This library will
provide the support for high-level language development while
maintaining portability and efficiency through the use of the C language.
As an example, one possibility which we are investigating is the
integration of the POSIX thread package with CVL, the C Vector Library
under development at CMU. In order to gain experience with parallel
systems and with the implementation of CVL, Mike Landis is collaborating
with Blelloch's team in order to develop a multiprocessor CRAY
implementation of CVL. This work should be done around the end of 0
October, at which time we will focus on the extensions to this library.

-_Distr ibut, --ti on/

2 NaL:t



(2) Michael Landis (graduate student), John Reif (P1), and Robert
Wagner (Duke faculty): Data Movement on Processor Arrays

We have completed our study of developing ways of evaluating uniform
e.pressions in near minimum parallel time on higher-dimensional
processor arrays. A paper describing the solution on two-dimensional
arrays is ready for submission to a journal publication. (This paper is a
follow-up to Robert Wagner's paper, "Evaluating Uniform Expressions
Within Two Steps of Minimum Parallel Time", Which solved the problem
for two-dimensional arrays only.)

(3) John Reif (PO): Data-Parallel Implementations of Fast
Multipole Algorithms for N.Body Interaction

We are exploring data-parallel implementations of Fast Multipole
Algorithms (FMA) for computing N-body interaction. Several algorithmic
variants of FMA, such as adaptive FMA and other fastest known
improvements [Reif,Tate92] are being expressed in a data-parallel fashion
using the languages NESL (Nested Sequence Language, by Blelloch at CMU)
and Proteus (at Duke and UNC). The data-parallel model provides a
succinct high-level expression which exposes parallelism in a scalable
fashion, and facilitates exploration and comparison of the parallel time
complexity of algorithmic variants. Implementations are realized by
transformation of the data-parallel programs to a lower-level widely
portable vector model (VCODE), for example targeting the CM-5.

Detlails
Many-body simulation is the key computational component in many
challenging problems such as fluid mechanics and molecular dynamics
simulation; the potential benefits of the latter include computer aided drug
design and protein structure determination. In N-body simulation the goal
is to simulate for a collection of N particles distributed in space the motion
over time due to gravitational or electrostatic interaction between the
particles. The naive solution requires NA2 comparisons to compute forces
arising from pairwise interaction. More sophisticated algorithms reduce
this complexity by relying on approximation of the lesser effects of far-
away clusters of particles (perhaps modeling them by a few large
particles), and on multigrid techniques which exploit this approximation by
hierarchically decomposing the particle space into near and far-away
points in order to isolate these far-field interactions.

3



The Fast Multipole Algorithm (FMA) [Greengard871 is a linear-time
algorithm for calculating N-body interactions which uses multipole
expansions to approximate the potential field created by a collection of
bodies outside the region that contains the bodies. The Adaptive FMA
(AFMA) improves on the FMA for non-uniform distributions. We have
expressed the AFMA in a data-parallel manner using the Proteus
programming language with two objectives. First, to prototype a complex
adaptive grid computation quickly and correctly in a high-level language
with the goal of expressing available parallelism in a succinct manner, and
second, to explore the feasibility of recently developed transformation and
translation techniques that translate data-parallel Proteus expressions to a
standard set of vector operations. The AFMA was written and the nested
parallelism can be translated to yield a nested sequence representation of
the problem. The result is a work-efficient implementation of the program
on a large class of parallel machines.

We are also pursuing the data-parallel implementation of several
algorithmic variants of the FMA leg, Reif-Tate 92) using NESL (developed
by Blelloch at CMU). The implementations, relying on NESL's
transformation to an underlying vector model (VCODE). will be widely
portable and scalable, and so our efforts will have broad impact. Parallel
work and parallel time complexity for both the VRAM and PRAM models
are easily derived from the data-parallel versions, facilitating comparative
evaluation of algorithmic improvements.

(4) Peter Mills (Research Associate) with John Reif: Rate Control
in Parallel Algorithms

Recent work has focused on extending high-level parallel computation
paradigms with constructs for expressing relative rates of progress. The
introduction of rate control supports a succinct specification of intended
resource allocation, and is a first step in extending models of parallel
computation with real-time properties, such as processor rates, in order to
support timing analysis. We are currently pursuing implementation of the
rate construct on a sequential interpreter for the Proteus language to use
in experiments with algorithmic variations of adaptive N-body simulation.

Details:
We have developed a new parallel programming construct, the rate
construct, which specifies constraints on the relative rates of progress of
tasks executing in parallel, where progress is the amount of computational
work as measured by elapsed ticks on a local logical clock. By prescribing

4



expected work, the rate construct constrains the allocation of processor-
time to tasks needed to achieve that work; in a parallel setting this
constrains the distribution of tasks to processors and multiprocessing
ratios, effectcd for example by load balancing. The utility of the rate
construct has been evidenced for a variety of problems, including weighted
parallel search for a goal, adaptive many-body simulation in which rates
abstract the requirements for load-balancing, and multiple time-stepped
computations in which the use of rates can alter the frequency of
asynchronous iterations.

One promising application of rate control is in algorithms for N-body
interactions which rely on an optimization in which, for a given particle,
interactions with far-away points are computed less frequently since their
effects fall off rapidly with distance. Such a technique is used for example
in the Generalized Verlet Algorithm [Grubmuller9l], where particles are
separated into "distance classes" aitd interactions with far-away particles
are computed less frequently. The rate construct can be used to control
this iteration frequency for clusters which may be running on
asynchronous processes. Another application of rate control is to effect
higher frequencies of iteration for well-separated clusters which have high
densities and thus must have small motion integration steps to
accommodate higher acceleration.

A paper describing the rate construct and various applications will appear
in the1993 IEEE Workshop on Real-Time Parallel and Distributed Systems.
We are currently pursuing sequential implementation of the rate construct,
and are also investigating means of transforming rate primitives in a
parallel setting to lower-level real-time and scheduling constructs.

(5) Peter Mills (Research Associate) with John Reif:
Implementing Asynchronous Parallelism using Tagged-Memory

Recent efforts have concentrated on extending high-level parallel
computation models with abstractions for asynchronous concurrency which
roughly mimic tagged memory. A novel construct, guarded
communication using linear operators, has been introduced and methods of
extending parallel functional languages such as NESL (CMU) and Concurrent
ML (Bell Labs) with linear operators are under investigation. A scalable
extension for asynchronism in a functional style promises to have large
impact in expressing and implementing parallel algorithms for machines
such as CM-5 and KSR-l.

5



We are developing high-level mechanisms for asynchronous concurrency
which include a variant of synchronization variables and a novel construct
we call linear variables. Synchronization variables are a synchronization
mechanism found in coordination languages such as PCN and CC++ as well
as in Id's 1-structures. Linear variables are a further extension which
model resource consumption, and prove valuable in succinctly modeling
channel and rendezvous operations within a shared-memory framework.
Linear variables prove particularly advantageous in that they can be
readily ported to many architectures, and promise to be amenable to
optimization techniques which transform the program to decrease non-
local references.

We are investigating extending an existing widely portable data-parallel
language, CMU's NESL (supporting nested data parallelism) with a wrapper
for asynchronous parallelism built on linear variables (similar to Id's M-
structures). The intent is to extend and thus capitalize on existing
techniques for transforming nested data parallelism to vector models, i.e.
the transformation of NESL to VCODE. (Such an implementation strategy
will most likely rely on run-time library extensions rather than extensions
to a low-level intermediate representation, as mentioned by Landis and
Wagner above).

Ongoing work:
- Extending NESL (CMU's nested data-parallel language) with mechanisms

for asynchronous parallelism.
- Development of refinement techniques for transforming extended NESL

to threads of vector code, targeting such machines as CM-5.
- Demonstration of viability of these techniques through concrete

implementations of N-body algorithms, specifically clustering and Fast
Multipole Methods, targeting MSPMD machines (e.g., CM-5).

(6) Peter Su (postdoc) and John Reif: Implementations of Parallel
Algorithms in Computational Geometry

We have been working on the implementational aspects of parallel
algorithms. Specifically, we have been studying parallel algorithms for
constructing Voronoi Diagrams and related problems. Our interest in this
study is not only to build effective algorithms for these problems, but
also to consider the kinds of tools that make such work easier and more
effective.

Our work has been broken up into three stages:

6



(1) Study the theory and practice of conventional algorithms for this
problem.
(2) Study the current body of theoretical work on parallel algorithms
for this problem.
(3) Using the knowledge gained in (a) and (b), design and implement
parallel algorithms for this problem on several machines. Then study
the performance of these algorithm and how well the theoretical results
match the behavior of the implementation.

We have been actively working on stages (1) and (2) for the last few
months and we are now ready to move on to stage (3). The study of
practical sequential algorithms has been especially helpful in the pursuit
of simple and efficient parallel algorithms, since they provide a good set
of ideas to extend and refine in a parallel setting.

Using the experience that we gain from this work, we are also
investigating and planning tools that could aid the programmer in
implementing effective parallel algorithms. Since many parallel
algorithms, especially in computational geometry, have similar structure,
one could imagine a tool for reasoning about abstract classes of
algorithms. In particular, such a system could aid the programmer in
tuning performance parameters for specific machines based on
architectural characteristics such as global memory bandwidth and
latency, processor speed, local memory size, and so on. Also, more basic
tols for doing visualization and performance analysis are needed to
help the programmer to effective experimental analysis of his
implementations. Tools for profiling, animation, simulation and data
analysis would all be extremely useful in these settings. At this point,
there are no such tools widely available to the research community.

Initial implementations of the ideas in this work has begun and has been
successful. I presented a paper at the DAGS conference this summer
that describes Cray algorithms for basic proximity problems. I have also
begun to explore implementations of the other ideas on various
machines, including the MasPar MP-1, the CM-5, and the KSR-I. This
development work will make up a large part of my PhD thesis, which
should be finished by this spring.

In addition, we have designed an efficient algorithm for constructing
Delaunay triangulations which we are in the process of implementing on
the KSR-I. It uses a novel 'transactional' method of constructing the
diagram in incremental phases. Each phase attempts to add as many

7



points as possible in parallel, but if two insertions conflict, then one or the
other must back off. We structure the insertion phases in a way that is
reminiscent of transaction processing systems so that the current diagram
is guaranteed to be unique. In addition, we randomize the insertion order
of the points to guarantee that the algorithm can achieve sufficient
parallelism.

(7) Shenfeng Chen with John Reif: Parallel Sort Implementation

S.mcaary
The fastest known sort is a parallel implementation of radix sort in a CRAY,
due to CMU's Guy Blelloch. The current sorting algorithms on parallel
machines like Cray and CM-2 use radix and bucket sort. But they are not
taking advantage of possible distribution of the input keys. We are
developing an algorithm using data compression to achieve a fast parallel
algorithm which takes this advantage. We expect the new algorithm to
beat the previous fastest sort by a few factors. We are working to
implement this new parallel sorting algorithm on various parallel
machines.

Details:
Radix sort is very efficient when the input keys can be viewed as bits. But
the basic radix sort is not distribution based so it needs to look up all
digits.

Our approach is to find the structure (distribution) of the input. This is
achieved by sampling from the original set. Then a hash table is build from
those sample keys. All keys are indexed to buckets separated by
consecutive sample keys. A probability analysis shows that the largest set
can be bounded within a constant of the average size.

The indexing step is made faster by binary searching the hash table for
match. From previous result, each hash function computation needs only
constant time.

Our algorithm needs O(nloglogn) time in sequential given that the
compression ratio of the given input set is not too big. In parallel, our
algorithm works well in chain-sorting. In list ranking sorting, the total
work is also reduced.

We have implemented this algorithm on Sparc II and compared its
performance with the system routine quicksort. It turns out that our
algorithm outwins the quicksortO for sufficiently large number of keys

8



(32M). Thus, it may find its place in sorting large database operations (e.g.,
required by joint operations). In these applications the keys are many
words long so our algorithm is even more advantageous in this case where
the cutoff is much lower.

Ongoing work:

We are currently implementing the algorithm on Cray Y-MP. Due to the
larger main memory, we expect better performance over Space 11. We are
also comparing our algorithm to the radix sort implemented by Blelloch on
Cray.

(8) Deganit Armon (A.B.D.) with John Reif: Dynamic Graph
Separator Algorithms.

We continued work on dynamic graph problems, using the techniques we
developed when studying the dynamic separator problem. These are
techniques for converting a fixed input randomized algorithm into a
randomized algorithm that accepts changes to the input. In addition we
showed a method for converting an expected time randomized algorithms
to randomized algorithms with high likelihood time bounds. We
attempted to apply these techniques to other dynamic graph problems, in
particular dynamic nested dissection and planar graph algorithms.

Details:

Randomized algorithms that use sampling select a small sample of the
input, apply an "expensive" algorithm to the sample, and then extrapolate
the result to the entire dataset. The solution will not necessarily be
"exact", but the error can usually be bounded. Examples of such
algorithms range from the version of quicksort in which a pivot is found
by taking the mean of a small sample, to complex algorithms for finding
graph separators, to implementations in computational geometry. We
described a technique for transforming such algorithms so that they can
deal with dynamically changing input, and applied this method to the
problem of finding a sphere separator for a set of points. We showed that
while the static algorithm takes linear time, computing a separator after
adding or deleting a point from the input set requires only a logarithmic
number of steps. We also showed that maintaining a more complex
separator structure could also be done dynamically in polylog time.

Another characteristic of randomized algorithms is that while we can
determine the expected time to completion, the actual running times may
vary considerably. We showed a technique which, through the use of

9



multiple processes (called replicants) which are performing the same
computations, we can guarantee the expected time bounds (with some
slowdown) with high likelihood. This technique is particularly useful
when in addition to changing the input the algorithm is also presented
with queries about the input. We can thus guarantee timely processing of
a query by one or more of the replicants. We showed how this method can
be applied to the problem of maintaining graph separators with only a
logA2 slowdown. This method can be applied to other randomized
algorithms that involve maintaining a data structure and answering
queries, such as arise in computational geometry.

A paper describing these techniques and their application to the dynamic
sphere separator problem has been submitted to WADS 93. Currently we
are working on finding randomized algorithms which can be dynamized
using these techniques.

(9) Prokash Sinha with John Reif: Randomized Parallel
Algorithms for Min Cost Paths

Summar-y:
We have completed our initial investigation to derive randomized
parallel algorithms for Min Cost Paths in a Graph of High Diameter. Our
present accomplishment is a randomized sequential algorithm with an
order of magnitude performance gain for some dense graphs.

We also found a similar result for PRAM computational model which meets
the work we proposed to do in our paper "A Randomized Algorithm for
Min Cost Paths in a Graph of High Diameter: Extended Abstract" (J. Reif and
P. Sinha). Currently we are in the process of submitting our findings to
technical journals and conferences. Our next phase of work would include
similar derivations of randomized parallel algorithms for a wide variety of
discrete structures which arises naturally in the area of Graph Theory and
Combinatorics. Our current research effort is to extend the techniques of
Flajolet and Karp to develop techniques and tools for timing analysis of
algorithms. This effort is to derive tools for semiautomatic randomized
analysis.

10



(10) Hongyan Wang with John Reif: Social Potential Fields: A
Molecular Dynamics Approach for Distributed Control of Multiple
Robots.

Much of the early research in robotic planning and control has
considered the case of only a single robot. There is now a number of
robot systems which include a small number of autonomous robots and
consequently there is a quickly growing literature on the planning and
cooperative control of systems of small numbers of robots. Our work is
concerned with Very Large Scale Robotic (VLSR) systems consisting of at
least hundreds to perhaps tens of thousands or more autonomous robots.
Our molecular dynamics approach is distributed and robust and flexible.

Details*
We view our VLSR systems as a molecular dynamics system, with
predefined force laws between each ordered pair of components (robots,
obstacles, objectives and other configurations). These force laws are
similar to those found in molecular dynamics, incorporating both
attraction and repulsion in the form of inverse power laws. However
these laws may differ from molecular systems in that we allow the
controller to arbitrarily define distinct laws of attraction and repulsion
for separate pairs and groups of robots to reflect their social relations or
to achieve some goals. For example, we define a pair-wise force law of
attraction and repulsion for a group of identical robots. The repulsion
will prevent collision among robots and the attraction will keep them in
a cluster. This simulates the phenomena called "individual distance" in
sociobiology.

Once the force laws are set up (they can be modified by the global
controller), each individual's movement is computed locally according to
the local environment sensed by individual robots and the force laws.
Thus the control is distributed and robust. Each robots obeys Newton's
Law and makes movement complying to the total force on it from the
other components.

We give concrete examples to show that this distributed autonomous
control will have lots of applications in industry, military and other
areas in the future when costs for individual robots drop and robots can
be made much more compact and more capable and flexible.

11



We did computer simulations involving large numbers of robots. Some
interesting and useful patterns can be achieved by defining proper force
laws for the system, e.g. forming a more or less evenly distributed single
cluster, forming a circle to guard a static point particle standing for
castle. We are doing more simulations showing more complex patterns.

We also discuss about spring laws similar to molecular bondings to
robotic control. Theories of graph rigidity support that we can design a
VLSR system which has a rigid structure. This has also applications
where assemblies are needed to finish some job efficiently.

(11) Hongyan Wang with John Reif: A Constant Time Algorithm
for N-body Simulation with Smooth Distributions.

N-body simulation problem is as follows: Given N points that have pair-
wise interactions, compute the equilibrium configuration of the N points.
This problem is central to a large body of work in theoretical physics,
chemistry, and scientific computing, including: cosmology, plasma
simulation, molecular dynamics, and fluid mechanics. The fastest N-body
simulation algorithm due to Greengard has time complexity of O(N) for
one step simulation. We propose to use the concept of density function to
describe the configuration of the large particle system and a method to
compute the equilibrium density function iteratively when given the
initial density function in constant time with the time complexity
depending only on the potential function and the required precision.

In a system of large number, say millions of particles, we are interested
more in the structure of the system, especially the structure under
equilibrium conditions than in the exact positions of all particles.
Observations from many fields, such as cosmology, plasma simulations,
molecular dynamics, and fluid mechanics, suggest that the distribution of
particles is homogeneous and can be described by smooth functions.
Thus we propose to use density function to describe the configuration of
particle systems.

Based on the fact that under equilibrium conditions, the total force on
each particle should equal to 0, we derive an iterative procedure
IMPROVE for improving the density function, which is of the form
4 (n+l)(x)=IMPROVE(0n(x)), where x is a position in the domain of

interest. Computing the total force on one robot by summing up
discretely all the forces from other robots will require Omega(n) time.

12



Instead, we only sum up forces from a constant number of nearby
particles. For particles far away, we do an integration of force function
multiplied by density function to approximate the resultant force. This
reduces the time complexity to constant. Thus each improvement
procedure requires constant time and the number of iterations depends
on the required precision, and thus can be constant.

Simulations showed that the iterative improvement procedures
converges. The results showed that in l-d the density function has a
bell-shaped curve and in 2-d has a vault-shaped surface in the domain
of interest and outside the domain has 0 value.

(12) Akitoshi Yoshida with John Reif: Image and Video
Compression

We considered several compression techniques using optical systems.
Optics can offer an alternative approach to overcome the limitations of
current compression schemes. We gave a simple optical system for the
cosine transform. We designed a new optical vector quantizer system using
holographic associative matching and discussed the issues concerning the
system.

Optical computing has recently become a very active research field. The
advantage of optics is its capability of providing highly parallel operations
in a three dimensional space. Image compression suffers from large
computational requirements. We propose optical architectures to execute
various image compression techniques, utilizing the inherent massive
parallelism of optics.

In our paper[RY2], we optically implemented the following compression
and corresponding decompression techniques:

"o transform coding
"o vector quantization
"o interframe coding for video

We showed many generally used transform coding methods, for example,
the cosine transform, can be implemented by a simple optical system. The
transform coding can be carried out in constant time.

Most of this paper is concerned with an innovative optical system for
vector quantization using holographic associative matching. Limitations of
conventional vector quantization schemes are caused by a large number of
sequential searches through a large vector space. Holographic associative

13



matching provided by multiple exposure holograms can offer
advantageous techniques for vector quantization based compression
schemes. Photo-refractive crystals, which provide high density recording
in real time, are used as our holographic media. The reconstruction
alphabet can be dynamically constructed through training or stored in the
photorefractive crystal in advance. Encoding a new vector can be carried
out by holographic associative matching in constant time.

We also discussed an extension of this optical system to interframe coding.

On going WoZrk:
We are investigating optical algorithms for video compression.

(1) Computational Geometry by Optical Computers
Some problems require inherently high degrees of interconnections which
may not be provided by any conventional electrical computers. The
advantage of optical computers is their apparent parallelism in a three
dimensional space. Several computational models have been already
proposed and constructed by various research groups. As the progress of
optical computers continues, there is a great demand in designing and
investigating various algorithms that are efficient and appropriate for the
proposed models. This situation resembles to the one a decade ago, when
various algorithms were investigated for the theoretical VLSI model. Thus,
we understand that the investigation on optical computing algorithms will
be essential to the development of optical or hybrid massively parallel
computers.

Optical techniques are particularly suited for processing images. This leads
us to believe that many problems found in computational geometry may
be efficiently solved by optical computers. Some researchers have recently
started to investigate some basic problems. We have been investigating
these and some other problems. We have obtained some new results.

(2) Optical Interconnection
Among processing units placed on a plane, various space-invariant
interconnections can be holographically established in constant time. We
are investigating appropriate interconnections and efficient algorithms for
several problems.

(3) Efficient computation for optical scattering
An efficient algorithm to solve the Helmholtz equations was developed by
Rokhlin at Yale. We have been studying his algorithm.

14



(4) Simulation of optical computing algorithms
We implemented a software simulator for optical computing algorithms.
The simulator is written in C on the X-window environment. It has a lisp-
like user interface, and images, which are the basic data structures in the
optical computing algorithms, are treated as lisp objects. We simulated
some algorithms designed for computational geometry problems.

We are improving the simulator and planning to implement it on a parallel
machine.

(13) Researchers supported (other than P1):

Mike Landis, graduate student
Peter Mills, post-doc
Peter Su, visiting graduate student
Robert Wagner, professor
Akitoshi Yoshida, graduate student

15



(14) Papers

(1) Optical Expanders with Applications in Optical Computing (with A.
Yoshida), Applied Optics , Vol. 32, 159-165,1993.

(2) Memory-Shared Parallel Architectures for Vector Quantization
Algorithms (with T. Markas), 1992. Accepted for the Picture Coding
Symposium, Lusanne Switzerland, Mar 93. Also submitted for journal
publication.

(3) Parallel and Output Sensitive Algorithms for Combinatorial and Linear
Algebra Problems (with J. Cheriyan), 1992. Accepted at Symposium
on Parallel Algorithms (SPAA'93), Velon, Germany, July 1993.

(4) The Complexity of N-body Simulation (with S.R. Tate), 1992. Accepted
at 20th Annual Colloquium on Automata, Languages and Programming
(ICALP'93), Lund, Sweden, July, 1993.

(5) Multispectral Image Compression Algorithms (with A. Markas)
accepted at Data Compression Conference (DCC'93), Snowbird, UT,
March 1993.

(6) Rate Control as a Language Construct for Parallel and Distributed
Programming (with P. Mills and J. Prins), 1992. Accepted at the IEEE
Workshop on Parallel and Distributed Real-Time Systems (IPPS'93),
Newport Beach, CA, April 1993.

(7) Algebraic Methods for Testing the k-Vertex Connectivity of Directed
Graphs, (with J. Cheriyan), 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, 1992. Accepted for publication as "Directed s-t
Numberings, Rubber Bands, and Testing Digraph k-Vertex
Connectivity," in Combinatorica.

(8) Searching in an Unknown Environment (with M. Kao and S. Tate), 4th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA92), San
Diego, CA, 1992. To appear in Information and Computation.

(9) Optical Techniques for Image Compression (with A. Yoshida). 2nd
Annual IEEE Data Compression Conference (DCC 92), Snowbird, UT,
March 1992, pp. 32-41. Also to appear in Image and Text
Compression, edited by James A. Storer, Kluwer Academic Publishers,
1992.

(10) Fast and Efficient Parallel Solution of Sparse Linear Systems (with V.
Pan). Accepted for publication in SIAM Journal on Computing, 1992.

16



(11) Nested Annealing: A Provable Improvement to Simulated Annealing
(with S. Rajasekaran). Accepted for publication in Journal of
Theoretical Computer Science, November 1992.

(12) On Threshold Circuits and Efficient, Constant Depth Polynomial
Computation (with S. Tate). Accepted for publication in SIAM Journal
of Computing, 1992.

(13) Planarity Testing in Parallel (with V. Ramachandran), University of
Texas at Austin Technical Report TR-90-15, June 1990. Invited to
special issue of Journal of Algorithms, 1992.

(14) The Computability and Complexity of Ray Tracing (with D. Tygar and
A. Yoshida). To appear in Discrete & Computational Geometry, 1992.

(15) Randomized Algorithms for Binary Search and Load Balancing on
Fixed Connection Networks with Geometric Applications (with S. Sen).
2nd Annual ACM Symposium on Parallel Algorithms and
Architectures, Crete, Greece, July 1990, pp. 327-337. To appear in
SIAM Journal of Computing, 1992.

(16) Strong k-connectivity in Digraphs and Random Digraphs (with P.
Spirakis). Accepted for publication in Algorithmica, 1992.

(17) Probabilistic Parallel Prefix Computation. Accepted for publication in
Computers and Mathematics with Applications, 1992.

(18) Efficient VLSI Fault Simulation. To appear in Computers and
Mathematics with Applications, 1992.

(19) Continuous Alternation (with S. Tate). To appear in a special issue of
Algorithmica, edited by B. Donald, 1992.

(20) Quad Tree Structures for Image Compression Applications (with T.
Markas). Special issue of Journal of Information Processing and
Management, 1992.

(21) The Power of Combining the Techniques of Algebraic and Numerical
Computing: Improved Approximate Multipoint Polynomial Evaluation
and Improved Multipole Algorithms (with V.Y. Pan and S.R. Tate),
33rd Symposium on Foundations of Computer Science, October 1992.
Also submitted for journal publication as "The Complexity of
Trummer's Problem, Zeta Function Evaluation, and N-body Simulation"
(with S. Tate).

17



(22) Towards Randomized Strongly Polynomial Algorithms for Linear
Programming (with S. Krishan). Duke University Technical Report CS-
1991-18. Submitted for publication to Operations Research Letters,
Dec 92.

(23) Method for Deriving Systolic Algorithms (by R.A. Wagner and M.D.
Landis), 1992. Submitted for journal publication.

(24) Evaluating Uniform Expressions Within Two Steps of Minimum
Parallel Time (by R.A. Wagner), 1992. Submitted for journal
publication.

(25) Shortest Paths in Euclidean Space with Polyhedral Obstacles (with
J.A. Storer). Symposium on Mathematical Foundations of Computer
Science, Czechoslovakia, August 1988. Revised as "Shortest Paths in the
plane with polygonal obstacles", 1992. Submitted for journal
publication.

(26) Error Resilient One-Way Dynamic Communication, (with J.A. Storer).
Revised as "Error Resilient Optimal Data Compression," Submitted for
journal publication.

(27) On Applications of Crypto-complexity to Analyzing Efficiency of
Capital Markets (with S. Azhar), 1992. Submitted for journal
publication.

(28) Fully Dynamic Graph Connectivity in Logarithmic Expected Time
(with P. Spirakis and M. Yung), 1992. Submitted for journal
publication.

(29) On Parallel Implementations and Experimentations of Lossless Data
Compression Algorithms (with T. Markas), 1992. Submitted for
publication.

(30) A Randomized Algorithm for Min Cost Paths in a Graph of High
Diameter: Extended Abstract (with P. Sinha), 1992. Submitted for
publication.

(31) Fast Algorithms for Closest Point Problems: Practice and Theory (by
Peter Su), 1992. Submitted for publication.

(32) A Fast Sort and Priority Queue for Entropy Bounded Inputs (with
Shenfeng Chen), 1992. Submitted for publication.

18



(33) Social Potential Fields: A Molecular Dynamics Approach for
Distributed Control of Social Behavior in Robots (with flongyan Wang),
1992.

(34) Dynamic Algebraic Algorithms (with S. R. Tate), 1992. Submitted for
publication.

(35) Dynamic Parallel Tree Contraction (with S. R. Tate), 1992. Submitted
for publication.

(36) A Dynamic Separator Algorithm with Applications to Computational
Geometry and Nested Dissection" (with D. Armon), 1992. Submitted for
publication.

(37) Using Learning and Difficulty of Prediction to Decrease Computation:
A Fast Sort and Priority Queue on Entropy Bounded Inputs (with S.
Chen), 1992. Submitted for publication.

(38) Re-Randomization and Average Case Analysis of Fully Dynamic Graph
Algorithms (with P.G. Spirakis and M. Yung), 1992. Submitted for
publication.

(39) Strictly Polylog Time, Linear Space Algorithms for Nearest Neighbor
Search and Dynamic Separators in d-Dimensions (with D. Armon)
1992. Submitted for publication.

(40) Diffraction realization of an optical expander (with R. Barakat), 1993.
Submitted for publication.

(41) Reduction on Multidimensional Processor Arrays (R. Wagner and M.
Landis), 1993. Submitted for publication.

(42) A Data-Parallel Implementation of the Adaptive Fast Multipole
Algorithm (with L. Nyland and J. Prins), 1993. Submitted for
publication.

(43) Improving viewing condition for reduced information holographic
display (with A. Yoshida), 1993. Submitted for publication.

19


